Classifier Assignment By Corpus-Based Approach

نویسندگان

  • Virach Sornlertlamvanich
  • Wantanee Pantachat
  • Surapant Meknavin
چکیده

This paper presents an algorithm for selecting an appropriate classifier word for a noun. In Thai language, it frequently happens that there is fluctuation in the choice of classifier for a given concrete noun, both from the point of view of the whole speech community and individual speakers. Basically, there is no exact rule for classifier selection. As far as we can do in the rule~based approach is to give a default rule to pick up a corresponding classifier of each noun. Registration of classifier for each noun is limited to the type of unit classifier because other types ,are open due to the meaning of representation. We propose a corpus-based method (Biber,1993; Nagao,1993; Smadja,1993) which generates Noun Classifier Associations (NCA) to overcome the problems in classifier assignment and semantic construction of noun phrase. The NCA is created statistically from a large corpus and recomposed under concept hierarchy constraints and frequency of occurrences.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

cm p - lg / 9 41 10 27 7 O ct 1 99 5 CLASSIFIER ASSIGNMENT BY CORPUS - BASED APPROACH

This paper presents an algorithm for selecting an appropriate classifier word for a noun. In Thai language, it frequently happens that there is fluctuation in the choice of classifier for a given concrete noun, both from the point of view of the whole speech community and individual speakers. Basically, there is no exact rule for classifier selection. As far as we can do in the rule-based appro...

متن کامل

روشی جدید جهت استخراج موجودیت‌های اسمی در عربی کلاسیک

In Natural Language Processing (NLP) studies, developing resources and tools makes a contribution to extension and effectiveness of researches in each language. In recent years, Arabic Named Entity Recognition (ANER) has been considered by NLP researchers due to a significant impact on improving other NLP tasks such as Machine translation, Information retrieval, question answering, query result...

متن کامل

Improvement of Chemical Named Entity Recognition through Sentence-based Random Under-sampling and Classifier Combination

Chemical Named Entity Recognition (NER) is the basic step for consequent information extraction tasks such as named entity resolution, drug-drug interaction discovery, extraction of the names of the molecules and their properties. Improvement in the performance of such systems may affects the quality of the subsequent tasks. Chemical text from which data for named entity recognition is extracte...

متن کامل

Learning to Solve QBF

We present a novel approach to solving Quantified Boolean Formulas (QBF) that combines a search-based QBF solver with machine learning techniques. We show how classification methods can be used to predict run-times and to choose optimal heuristics both within a portfolio-based, and within a dynamic, online approach. In the dynamic method variables are set to a truth value according to a scheme ...

متن کامل

Semi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk

This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994